Refined UNet V2: End-to-End Patch-Wise Network for Noise-Free Cloud and Shadow Segmentation

Author:

Jiao Libin,Huo Lianzhi,Hu Changmiao,Tang Ping

Abstract

Cloud and shadow detection is an essential prerequisite for further remote sensing processing, whereas edge-precise segmentation remains a challenging issue. In Refined UNet, we considered the aforementioned task and proposed a two-stage pipeline to achieve the edge-precise segmentation. The isolated segmentation regions in Refined UNet, however, bring inferior visualization and should be sufficiently eliminated. Moreover, an end-to-end model is also expected to jointly predict and refine the segmentation results. In this paper, we propose the end-to-end Refined UNet v2 to achieve joint prediction and refinement of cloud and shadow segmentation, which is capable of visually neutralizing redundant segmentation pixels or regions. To this end, we inherit the pipeline of Refine UNet, revisit the bilateral message passing in the inference of conditional random field (CRF), and then develop a novel bilateral strategy derived from the Guided Gaussian filter. Derived from a local linear model of denoising, our v2 can considerably remove isolated segmentation pixels or regions, which is able to yield “cleaner” results. Compared to the high-dimensional Gaussian filter, the Guided Gaussian filter-based message-passing strategy is quite straightforward and easy to implement so that a brute-force implementation can be easily given in GPU frameworks, which is potentially efficient and facilitates embedding. Moreover, we prove that Guided Gaussian filter-based message passing is highly relevant to the Gaussian bilateral term in Dense CRF. Experiments and results demonstrate that our v2 is quantitatively comparable to Refined UNet, but can visually outperform that from the noise-free segmentation perspective. The comparison of time consumption also supports the potential efficiency of our v2.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3