Towards Edge-Precise Cloud and Shadow Detection on the GaoFen-1 Dataset: A Visual, Comprehensive Investigation

Author:

Jiao Libin1,Zheng Mocun1,Tang Ping2,Zhang Zheng2ORCID

Affiliation:

1. Department of Computer Science and Technology, School of Mechanical Electronic and Information Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China

2. Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing 100101, China

Abstract

Remote sensing images are usually contaminated by opaque cloud and shadow regions when acquired, and therefore cloud and shadow detection arises as one of the essential prerequisites for restoration and prediction of the objects of interest underneath, which are required by further processing and analysis. Cutting-edge, learning-based segmentation techniques, given a well-labeled, sufficient sample set, are significantly developed for such a detection issue and can already achieve region-accurate or even pixel-precise performance. However, it may possibly be problematic to attempt to apply the sophisticated segmentation techniques to label-free datasets in a straightforward way, more specifically, to the remote sensing data generated by the Chinese domestic satellite GaoFen-1. We wish to partially address such a segmentation problem from a practical perspective rather than in a conceptual way. This can be performed by considering a hypothesis that a segmentor, which is sufficiently trained on the well-labeled samples of common bands drawn from a source dataset, can be directly applicable to the custom, band-consistent test cases from a target set. Such a band-consistent hypothesis allows us to present a straightforward solution to the GaoFen-1 segmentation problem by treating the well-labeled Landsat 8 Operational Land Imager dataset as the source and by selecting the fourth, the third, and the second bands, also known as the false-color bands, to construct the band-consistent samples and cases. Furthermore, we attempt to achieve edge-refined segmentation performance on the GaoFen-1 dataset by adopting our prior Refined UNet and v4. We finally verify the effectiveness of the band-consistent hypothesis and the edge-refined approaches by performing a relatively comprehensive investigation, including visual comparisons, ablation experiments regarding bilateral manipulations, explorations of critical hyperparameters within our implementation of the conditional random field, and time consumption in practice. The experiments and corresponding results show that the hypothesis of selecting the false-color bands is effective for cloud and shadow segmentation on the GaoFen-1 data, and that edge-refined segmentation performance of our Refined UNet and v4 can be also achieved.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3