Abstract
Four different graphene-based nanomaterials (htGO, N-htGO, htGONR, and N-htGONR) were synthesized, characterized, and used as a modifier of carbon paste electrode (CPE) in order to produce a reliable, precise, and highly sensitive non-enzymatic amperometric hydrogen peroxide sensor for complex matrices. CPE, with their robustness, reliability, and ease of modification, present a convenient starting point for the development of new sensors. Modification of CPE was optimized by systematically changing the type and concentration of materials in the modifier and studying the prepared electrode surface by cyclic voltammetry. N-htGONR in combination with manganese dioxide (1:1 ratio) proved to be the most appropriate material for detection of hydrogen peroxide in pharmaceutical and saliva matrices. The developed sensor exhibited a wide linear range (1.0–300 µM) and an excellent limit of detection (0.08 µM) and reproducibility, as well as high sensitivity and stability. The sensor was successfully applied to real sample analysis, where the recovery values for a commercially obtained pharmaceutical product were between 94.3% and 98.0%. Saliva samples of a user of the pharmaceutical product were also successfully analyzed.
Funder
Slovenian Research Agency
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献