Abstract
In this study, the cellular synergistic and antagonistic effects of mixing tartrazine (TZ) with curcumin (CUR) or curcumin-nanoparticles (CUR-NPs) were investigated. The in vivo administration of TZ, CUR, CUR-NPs, and TZ mixed with CUR or CUR-NPs at 75:25 or 50:50 ratios were tested. The results indicated that CUR and CUR -NPs reduced the cytotoxicity effects of TZ on skin fibroblast BJ-1 (ATCC® CRL-2522™) normal cells. However, among the tested materials, CUR-NPs had highest in vitro and in vivo antioxidant activity compared to TZ. Furthermore, CUR-NPs and CUR exhibited anticancer activity against HepG-2 liver cancer cells via apoptosis induction. The key apoptosis protein genes Caspase-3, p53, and Bax were upregulated, whereas Bc-2, which exhibits anti-apoptosis activity, was downregulated. Our results indicated that the nano-formulation of CUR alters its physicochemical properties, including the size and shape, and increases its antioxidant and anticancer properties. CUR-NPs also overcome the side effect of using TZ as a yellow color and food preservative additive, due to its reduced toxicity, oxidative stress, and carcinogenicity. In agreement with our previous findings, CUR and CUR-NPs were able to protect against cellular oxidative stress by stimulating endogenous antioxidant defense enzymes, including superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), glutathione peroxidase (GPx), and glutathione-S-transferase (GST). We conclude that the nano-formulation of CUR exhibits economic benefits as a new strategy to use CUR as a food additive at the cellular level.
Subject
Physical and Theoretical Chemistry,Catalysis