Abstract
The lack of active, stable, earth-abundant, and visible-light absorbing materials to replace plasmonic noble metals is a critical obstacle for researchers in developing highly efficient and cost-effective photocatalytic systems. Herein, a core–shell nanotube catalyst was fabricated consisting of atomic layer deposited HfN shell and anodic TiO2 support layer with full-visible regime photoactivity for photoelectrochemical water splitting. The HfN active layer has two unique characteristics: (1) A large bandgap between optical and acoustic phonon modes and (2) No electronic bandgap, which allows a large population of long life-time hot carriers, which are used to enhance the photoelectrochemical performance. The photocurrent density (≈2.5 mA·cm−2 at 1 V vs. Ag/AgCl) obtained in this study under AM 1.5G 1 Sun illumination is unprecedented, as it is superior to most existing plasmonic noble metal-decorated catalysts and surprisingly indicates a photocurrent response that extends to 730 nm. The result demonstrates the far-reaching application potential of replacing active HER/HOR noble metals such as Au, Ag, Pt, Pd, etc. with low-cost plasmonic ceramics.
Funder
Natural Sciences and Engineering Research Council
Future Energy Systems CFREF
National Research Council Canada
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献