Dual-Cycle Mechanism Based Kinetic Model for DME-to-Olefin Synthesis on HZSM-5-Type Catalysts

Author:

Magomedova MariaORCID,Starozhitskaya Anastasiya,Davidov Ilya,Maximov Anton,Kravtsov Maksim

Abstract

A kinetic model for the olefins synthesis from dimethyl ether on zeolite HZSM-5 based catalysts is developed. The model includes the reaction pathways for the synthesis of olefins from oxygenates in the olefinic and aromatic cycles according to modern concepts of the dual-cycle reaction mechanism. The kinetic parameters were determined for the time-stable hydrothermally treated catalysts of various activities Mg-HZSM-5/Al2O3, HZSM-5/Al2O3, and Zr-HZSM-5/Al2O3. The kinetic parameters determination and the solution of the ordinary differential equations system were carried out in the Python software environment. The preliminary estimation of the kinetic parameters was carried out using the Levenberg-Marquardt algorithm, and the parameters were refined using the genetic algorithm. It is shown that reactions activation energies for different catalysts are close, which indicates that the priority of the reaction paths on the studied catalysts is the same. Thus, the topology of the zeolite plays a leading role in the determination of the synthesis routes, rather than the nature of the modifying metal. The developed model fits the experimental data obtained in an isothermal reactor in the range of temperature 320–360 °C, specified contact time 0.1–3.6 h*gcat/gC with a relative error of less than 15%.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Reference43 articles.

1. The Future of Petrochemicals: Growth Surrounded by Uncertaintyhttps://www2.deloitte.com/content/dam/Deloitte/us/Documents/energy-resources/us-the-future-of-petrochemicals.pdf

2. UOP OleflexTM PDH Technology: Innovation, Performance and Reliabilityhttps://globuc.com/wp-content/uploads/2020/07/WERY-UOP-ENG.pdf

3. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts

4. Methanol to Olefins (MTO): From Fundamentals to Commercialization

5. Methanol-to-olefins process technology: current status and future prospects

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3