Transient Evolution of Inland Freshwater Lenses: Comparison of Numerical and Physical Experiments

Author:

Rotz Rachel,Milewski AdamORCID,Rasmussen Todd C

Abstract

Brackish to saline groundwater in arid environments encourages the development and sustainability of inland freshwater lenses (IFLs). While these freshwater resources supply much-needed drinking water throughout the Arabian Peninsula and other drylands, little is understood about their sustainability. This study presents a numerical model using the SEAWAT programming code (i.e., MODFLOW and the Modular Three-Dimensional Multispecies Transport Model (MT3DMS)) to simulate IFL transient evolution. The numerical model is based on a physical laboratory model and calibrated using results from simulations conducted in a previous study of the Raudhatain IFL in northern Kuwait. Data from three previously conducted physical model simulations were evaluated against the corresponding numerical model simulations. The hydraulic conductivities in the horizontal and vertical directions were successfully optimized to minimize the objective function of the numerical model simulations. The numerical model matched observed IFL water levels at four locations through time, as well as IFL thicknesses and lengths (R2 = 0.89, 0.94, 0.85). Predicted lens degradation times corresponded to the observed lenses, which demonstrated the utility of numerical models and physical models to assess IFL geometry and position. Improved understanding of IFL dynamics provides water-resource exploration and development opportunities in drylands throughout the Arabian Peninsula and elsewhere with similar environmental settings.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3