Optimizing Local Alignment along the Seamline for Parallax-Tolerant Orthoimage Mosaicking

Author:

Yin Hongche,Li YunmengORCID,Shi Junfeng,Jiang Jiaqin,Li LiORCID,Yao Jian

Abstract

Orthoimage mosaicking with obvious parallax caused by geometric misalignment is a challenging problem in the field of remote sensing. Because the obvious objects are not included in the digital terrain model (DTM), large parallax exists in these objects. A common strategy is to search an optimal seamline between orthoimages, avoiding the majority of obvious objects. However, stitching artifacts may remain because (1) the seamline may still cross several obvious objects and (2) the orthoimages may not be precisely aligned in geometry when the accuracy of the DTM is low. While applying general image warping methods to orthoimages can improve the local geometric consistency of adjacent images, these methods usually significantly modify the geometric properties of orthophoto maps. To the best of our knowledge, no approach has been proposed in the field of remote sensing to solve the problem of local geometric misalignments after orthoimage mosaicking with obvious parallax. In this paper, we creatively propose a method to optimize local alignment along the seamline after seamline detection. It consists of the following main processes. First, we locate regions with geometric misalignments along the seamline based on the similarity measure. Second, for any one region, we find one-dimensional (1D) feature matches along the seamline using a semi-global matching approach. The deformation vectors are calculated for these matches. Third, these deformation vectors are robustly and smoothly propagated into the buffer region centered on the seamline by minimizing the associated energy function. Finally, we directly warp the orthoimages to eliminate the local parallax under the guidance of dense deformation vectors. The experimental results on several groups of orthoimages show that our proposed approach is capable of eliminating the local parallax existing in the seamline while preserving most geometric properties of digital orthophoto maps, and that it outperforms state-of-the-art approaches in terms of both visual quality and quantitative metrics.

Funder

National Natural Science Foundation of China

Shenzhen Central Guiding the Local Science and Technology Development Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3