Abstract
Accurate building extraction from remotely sensed data is difficult to perform automatically because of the complex environments and the complex shapes, colours and textures of buildings. Supervised deep-learning-based methods offer a possible solution to solve this problem. However, these methods generally require many high-quality, manually labelled samples to obtain satisfactory test results, and their production is time and labour intensive. For multimodal data with sufficient information, extracting buildings accurately in as unsupervised a manner as possible. Combining remote sensing images and LiDAR point clouds for unsupervised building extraction is not a new idea, but existing methods often experience two problems: (1) the accuracy of vegetation detection is often not high, which leads to limited building extraction accuracy, and (2) they lack a proper mechanism to further refine the building masks. We propose two methods to address these problems, combining aerial images and aerial LiDAR point clouds. First, we improve two recently developed vegetation detection methods to generate accurate initial building masks. We then refine the building masks based on the image feature consistency constraint, which can replace inaccurate LiDAR-derived boundaries with accurate image-based boundaries, remove the remaining vegetation points and recover some missing building points. Our methods do not require manual parameter tuning or manual data labelling, but still exhibit a competitive performance compared to 29 methods: our methods exhibit accuracies higher than or comparable to 19 state-of-the-art methods (including 8 deep-learning-based methods and 11 unsupervised methods, and 9 of them combine remote sensing images and 3D data), and outperform the top 10 methods (4 of them combine remote sensing images and LiDAR data) evaluated using all three test areas of the Vaihingen dataset on the official website of the ISPRS Test Project on Urban Classification and 3D Building Reconstruction in average area quality. These comparative results verify that our unsupervised methods combining multisource data are very effective.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Beijing Key Laboratory of Urban Spatial Information Engineering
Subject
General Earth and Planetary Sciences
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献