Unsupervised Building Extraction from Multimodal Aerial Data Based on Accurate Vegetation Removal and Image Feature Consistency Constraint

Author:

Meng YanORCID,Chen ShanxiongORCID,Liu YuxuanORCID,Li LiORCID,Zhang Zemin,Ke Tao,Hu Xiangyun

Abstract

Accurate building extraction from remotely sensed data is difficult to perform automatically because of the complex environments and the complex shapes, colours and textures of buildings. Supervised deep-learning-based methods offer a possible solution to solve this problem. However, these methods generally require many high-quality, manually labelled samples to obtain satisfactory test results, and their production is time and labour intensive. For multimodal data with sufficient information, extracting buildings accurately in as unsupervised a manner as possible. Combining remote sensing images and LiDAR point clouds for unsupervised building extraction is not a new idea, but existing methods often experience two problems: (1) the accuracy of vegetation detection is often not high, which leads to limited building extraction accuracy, and (2) they lack a proper mechanism to further refine the building masks. We propose two methods to address these problems, combining aerial images and aerial LiDAR point clouds. First, we improve two recently developed vegetation detection methods to generate accurate initial building masks. We then refine the building masks based on the image feature consistency constraint, which can replace inaccurate LiDAR-derived boundaries with accurate image-based boundaries, remove the remaining vegetation points and recover some missing building points. Our methods do not require manual parameter tuning or manual data labelling, but still exhibit a competitive performance compared to 29 methods: our methods exhibit accuracies higher than or comparable to 19 state-of-the-art methods (including 8 deep-learning-based methods and 11 unsupervised methods, and 9 of them combine remote sensing images and 3D data), and outperform the top 10 methods (4 of them combine remote sensing images and LiDAR data) evaluated using all three test areas of the Vaihingen dataset on the official website of the ISPRS Test Project on Urban Classification and 3D Building Reconstruction in average area quality. These comparative results verify that our unsupervised methods combining multisource data are very effective.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Beijing Key Laboratory of Urban Spatial Information Engineering

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3