YOLOD: A Target Detection Method for UAV Aerial Imagery

Author:

Luo Xudong,Wu Yiquan,Zhao Langyue

Abstract

Target detection based on unmanned aerial vehicle (UAV) images has increasingly become a hot topic with the rapid development of UAVs and related technologies. UAV aerial images often feature a large number of small targets and complex backgrounds due to the UAV’s flying height and shooting angle of view. These characteristics make the advanced YOLOv4 detection method lack outstanding performance in UAV aerial images. In light of the aforementioned problems, this study adjusted YOLOv4 to the image’s characteristics, making the improved method more suitable for target detection in UAV aerial images. Specifically, according to the characteristics of the activation function, different activation functions were used in the shallow network and the deep network, respectively. The loss for the bounding box regression was computed using the EIOU loss function. Improved Efficient Channel Attention (IECA) modules were added to the backbone. At the neck, the Spatial Pyramid Pooling (SPP) module was replaced with a pyramid pooling module. At the end of the model, Adaptive Spatial Feature Fusion (ASFF) modules were added. In addition, a dataset of forklifts based on UAV aerial imagery was also established. On the PASCAL VOC, VEDAI, and forklift datasets, we ran a series of experiments. The experimental results reveal that the proposed method (YOLO-DRONE, YOLOD) has better detection performance than YOLOv4 for the aforementioned three datasets, with the mean average precision (mAP) being improved by 3.06%, 3.75%, and 1.42%, respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PAL-YOLOv8: A Lightweight Algorithm for Insulator Defect Detection;Electronics;2024-09-03

2. Small Object Detection in UAV Images Based on YOLOv8n;International Journal of Computational Intelligence Systems;2024-08-26

3. Improved YOLOv7-Tiny for Object Detection Based on UAV Aerial Images;Electronics;2024-07-27

4. Detection and recognition of aircraft vehicle-A supple approach using deep pliable YOLOv5;Multimedia Tools and Applications;2024-06-27

5. Research on Small Viewing Angle Target Detection Algorithm of UAV Based on Improved YOLOv8;2024 6th International Conference on Communications, Information System and Computer Engineering (CISCE);2024-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3