Strength Investigation and Prediction of Superfine Tailings Cemented Paste Backfill Based on Experiments and Intelligent Methods

Author:

Hu Yafei12,Li Keqing12,Zhang Bo12,Han Bin12

Affiliation:

1. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Key Laboratory of Ministry of Education of China for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China

Abstract

The utilization of solid waste for filling mining presents substantial economic and environmental advantages, making it the primary focus of current filling mining technology development. To enhance the mechanical properties of superfine tailings cemented paste backfill (SCPB), this study conducted response surface methodology experiments to investigate the impact of various factors on the strength of SCPB, including the composite cementitious material, consisting of cement and slag powder, and the tailings’ grain size. Additionally, various microanalysis techniques were used to investigate the microstructure of SCPB and the development mechanisms of its hydration products. Furthermore, machine learning was utilized to predict the strength of SCPB under multi-factor effects. The findings reveal that the combined effect of slag powder dosage and slurry mass fraction has the most significant influence on strength, while the coupling effect of slurry mass fraction and underflow productivity has the lowest impact on strength. Moreover, SCPB with 20% slag powder has the highest amount of hydration products and the most complete structure. When compared to other commonly used prediction models, the long-short term memory neural network (LSTM) constructed in this study had the highest prediction accuracy for SCPB strength under multi-factor conditions, with root mean square error (RMSE), correlation coefficient (R), and variance account for (VAF) reaching 0.1396, 0.9131, and 81.8747, respectively. By optimizing the LSTM using the sparrow search algorithm (SSA), the RMSE, R, and VAF improved by 88.6%, 9.4%, and 21.9%, respectively. The research results can provide guidance for the efficient filling of superfine tailings.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3