Polymer-Matrix Composites: Characterising the Impact of Environmental Factors on Their Lifetime

Author:

Barreira-Pinto Rui1,Carneiro Rodrigo1,Miranda Mário1,Guedes Rui Miranda12ORCID

Affiliation:

1. Departamento de Engenharia Mecânica Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

2. INEGI-Instituto de Engenharia Mecânica e Gestão Industrial, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

Abstract

Polymer-matrix composites are widely used in engineering applications. Yet, environmental factors impact their macroscale fatigue and creep performances significantly, owing to several mechanisms acting at the microstructure level. Herein, we analyse the effects of water uptake that are responsible for swelling and, over time and in enough quantity, for hydrolysis. Seawater, due to a combination of high salinity and pressures, low temperature and biotic media present, also contributes to the acceleration of fatigue and creep damage. Similarly, other liquid corrosive agents penetrate into cracks induced by cyclic loading and cause dissolution of the resin and breakage of interfacial bonds. UV radiation either increases the crosslinking density or scissions chains, embrittling the surface layer of a given matrix. Temperature cycles close to the glass transition damage the fibre–matrix interface, promoting microcracking and hindering fatigue and creep performance. The microbial and enzymatic degradation of biopolymers is also studied, with the former responsible for metabolising specific matrices and changing their microstructure and/or chemical composition. The impact of these environmental factors is detailed for epoxy, vinyl ester and polyester (thermoset); polypropylene, polyamide and poly etheretherketone (thermoplastic); and for poly lactic acid, thermoplastic starch and polyhydroxyalkanoates (biopolymers). Overall, the environmental factors mentioned hamper the fatigue and creep performances, altering the mechanical properties of the composite or causing stress concentrations through microcracks, promoting earlier failure. Future studies should focus on other matrices beyond epoxy as well as on the development of standardised testing methods.

Publisher

MDPI AG

Subject

General Materials Science

Reference261 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3