Phytochemical Synthesis of Silver Nanoparticles and Their Antimicrobial Investigation on Cotton and Wool Textiles

Author:

Lite Mihaela Cristina12,Constantinescu Roxana2,Tănăsescu Elena Cornelia12,Kuncser Andrei3ORCID,Romanițan Cosmin4ORCID,Mihaiescu Dan Eduard1,Lacatusu Ioana1,Badea Nicoleta1ORCID

Affiliation:

1. Faculty of Chemical Engineering and Biotechnology, University Politehnica of Bucharest, 1-7, Polizu Street, 011061 Bucharest, Romania

2. National Research and Development Institute for Textiles and Leather–INCDTP, Lucretiu Patrascanu 16, 030508 Bucharest, Romania

3. National Institute of Materials Physics, Atomistilor 405A, Magurele, 077125 Bucharest, Romania

4. National Institute for Research and Development in Microtechnologies, Erou Iancu Nicolae 126A, 077190 Voluntari, Romania

Abstract

The use of bio-based reagents for silver nanoparticle (AgNP) production has gained much attention among researchers as it has paved the way for environmentally friendly approaches at low cost for synthesizing nanomaterials while maintaining their properties. In this study, Stellaria media aqueous extract was used for silver nanoparticle phyto-synthesis, and the resulting treatment was applied to textile fabrics to test its antimicrobial properties against bacteria and fungi strains. The chromatic effect was also established by determining the L*a*b* parameters. For optimizing the synthesis, different ratios of extract to silver precursor were tested using UV-Vis spectroscopy to observe the SPR-specific band. Moreover, the AgNP dispersions were tested for their antioxidant properties using chemiluminescence and TEAC methods, and the phenolic content was evaluated by the Folin-Ciocâlteu method. For the optimal ratio, values of average size, 50.11 ± 3.25 nm, zeta potential, −27.10 ± 2.16 mV, and polydispersity index, 0.209, were obtained via the DLS technique and zeta potential measurements. AgNPs were further characterized by EDX and XRD techniques to confirm their formation and by microscopic techniques to evaluate their morphology. TEM measurements revealed cvasi-spherical particles with sizes in the range of 10–30 nm, while SEM images confirmed their uniform distribution on the textile fiber surface.

Funder

Ministry of Research and Innovation

European Social Fund

MCID

European Regional Development Fund

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3