Groundwater Quality Assessment Based on the Random Forest Water Quality Index—Taking Karamay City as an Example

Author:

Xiong Yanna1,Zhang Tianyi2,Sun Xi3,Yuan Wenchao1,Gao Mingjun1,Wu Jin2ORCID,Han Zhijun4

Affiliation:

1. Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China

2. Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China

3. School of Civil and Architectural Engineering, Anyang Institute of Technology, Anyang 455000, China

4. Sino-Japan Friendship Centre for Environmental Protection, Beijing 100012, China

Abstract

In the past few decades, global industrial development and population growth have led to a scarcity of water resources, making sustainable management of groundwater a global challenge. The Water Quality Index (WQI) serves as a comprehensive method for assessing water quality and can provide valuable recommendations at the water quality level, optimizing policies for groundwater management. However, the subjectivity and uncertainty of the traditional WQI have negative impacts on evaluation outcomes, particularly in determining indicator weights and selecting aggregation functions. The proposed water quality index for groundwater based on the random forest (RFWQI) model in this study addresses these issues. It selects water quality indicators based on the actual pollution situation in the study area, employs an advanced random forest model to rank water quality indicators, determines indicator weights using the rank centroid method, scores the indicators using a sub-index function designed for groundwater development, and compares the results of two commonly used aggregation functions to identify the optimal one. Based on the aggregated scores, the water quality at 137 monitoring sites is classified into five levels: “Excellent”, “Good”, “Medium”, “Poor”, or “Unacceptable”. Among the 11 water quality indicators (sodium, sulfate, chloride, bicarbonate, total dissolved solids, fluoride, boron, nitrate, pH, CODMn, and hardness), chloride was given the highest weight (0.236), followed by total dissolved solids (0.156), and sodium was given the lowest weight (0.008). The random forest model exhibits a good prediction capability before hyperparameter tuning (86% accuracy, RMSE of 0.378), and after grid search and five-fold cross-validation, the optimal hyperparameter combination is determined, further improving the performance of the random forest model (94% accuracy, F1-Score of 0.967, AUC of 0.91, RMSE of 0.232). For the newly developed groundwater sub-index function, interpolation is used to score each indicator, and after comparing two aggregation functions, the NSF aggregation function is selected as the most suitable for groundwater assessment. Overall, most of the groundwater in the study area was of poor quality (52.5% of low quality) and not suitable for drinking.

Funder

Hebei Province Key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3