Advanced Machine Learning and Water Quality Index (WQI) Assessment: Evaluating Groundwater Quality at the Yopurga Landfill

Author:

Zheng Hongmei1,Hou Shiwei2,Liu Jing3,Xiong Yanna3,Wang Yuxin3

Affiliation:

1. HUAZE EcoEnviron Technology & Engineering Institute (Beijing) Co., Ltd., Beijing 101400, China

2. School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China

3. Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China

Abstract

As industrial development and population growth continue, water pollution has become increasingly severe, particularly in rapidly industrializing regions like the area surrounding the Yopurga landfill. Ensuring water resource safety and environmental protection necessitates effective water quality monitoring and assessment. This paper explores the application of advanced machine learning technologies and the Water Quality Index (WQI) model as a comprehensive method for accurately assessing groundwater quality near the Yopurga landfill. The methodology involves selecting water quality indicators based on available data and the hydrochemical characteristics of the study area, comparing the performance of Decision Trees, Random Forest, and Xgboost algorithms in predicting water quality, and identifying the optimal algorithm to determine indicator weights. Indicators are scored using appropriate sub-index (SI) functions, and six different aggregation functions are compared to find the most suitable one. The study reveals that the Xgboost model surpasses Decision Trees and Random Forest models in water quality prediction. The top three indicator weights identified are pH, Manganese (Mn), and Nickel (Ni). The SWM model, with a 0% overestimation eclipsing rate and a 34% underestimation eclipsing rate, is chosen as the most appropriate WQI model for evaluating groundwater quality at the Yopurga landfill. According to the WQI results from the SWM aggregation function, the overall water quality in the area ranges from moderately polluted to slightly polluted. These assessment results provide a scientific basis for regional water environment protection.

Funder

Detailed Investigation and Risk Assessment of the Environmental Conditions of Groundwater at the Yopurga Landfill Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3