Exploiting Time Series of Sentinel-1 and Sentinel-2 Imagery to Detect Meadow Phenology in Mountain Regions

Author:

Stendardi Laura,Karlsen Stein,Niedrist Georg,Gerdol Renato,Zebisch Marc,Rossi Mattia,Notarnicola ClaudiaORCID

Abstract

A synergic integration of Synthetic Aperture Radar (SAR) and optical time series offers an unprecedented opportunity in vegetation phenology monitoring for mountain agriculture management. In this paper, we performed a correlation analysis of radar signal to vegetation and soil conditions by using a time series of Sentinel-1 C-band dual-polarized (VV and VH) SAR images acquired in the South Tyrol region (Italy) from October 2014 to September 2016. Together with Sentinel-1 images, we exploited corresponding Sentinel-2 images and ground measurements. Results show that Sentinel-1 cross-polarized VH backscattering coefficients have a strong vegetation contribution and are well correlated with the Normalized Difference Vegetation Index (NDVI) values retrieved from optical sensors, thus allowing the extraction of meadow phenological phases. Particularly for the Start Of Season (SOS) at low altitudes, the mean difference in days between Sentinel-1 and ground sensors is compatible with the acquisition time of the SAR sensor. However, the results show a decrease in accuracy with increasing altitude. The same trend is observed for senescence. The main outcomes of our investigations in terms of inter-satellite comparison show that Sentinel-1 is less effective than Sentinel-2 in detecting the SOS. At the same time, Sentinel-1 is as robust as Sentinel-2 in defining mowing events. Our study shows that SAR-Optical data integration is a promising approach for phenology detection in mountain regions.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3