Securing Cryptographic Chips against Scan-Based Attacks in Wireless Sensor Network Applications

Author:

Wang ,Deng ,Wang ,Sangaiah ,Cai ,Almakhadmeh ,Tolba

Abstract

Wireless sensor networks (WSN) have deeply influenced the working and living styles of human beings. Information security and privacy for WSN is particularly crucial. Cryptographic algorithms are extensively exploited in WSN applications to ensure the security. They are usually implemented in specific chips to achieve high data throughout with less computational resources. Cryptographic hardware should be rigidly tested to guarantee the correctness of encryption operation. Scan design improves significantly the test quality of chips and thus is widely used in semiconductor industry. Nevertheless, scan design provides a backdoor for attackers to deduce the cipher key of a cryptographic core. To protect the security of the cryptographic system we first present a secure scan architecture, in which an automatic test control circuitry is inserted to isolate the cipher key in test mode and clear the sensitive information at mode switching. Then, the weaknesses of this architecture are analyzed and an enhanced scheme using concept of test authorization is proposed. If the correct authorization key is applied within the specific time, the normal test can be performed. Otherwise, only secure scan test can be performed. The enhanced scan scheme ensures the security of cryptographic chips while remaining the advantages of scan design.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hardware Security of Scan Chain;2023 IEEE 20th India Council International Conference (INDICON);2023-12-14

2. Securing Smart City Services in Cyber-Physical Systems Using the Computation Annealed Selection Process;International Journal of Foundations of Computer Science;2022-06-10

3. A robust packet‐dropping covert channel for mobile intelligent terminals;International Journal of Intelligent Systems;2022-03-07

4. Data security sharing model based on privacy protection for blockchain‐enabled industrial Internet of Things;International Journal of Intelligent Systems;2020-10-07

5. Scan‐based attack tolerance with minimum testability loss: a gate‐level approach;IET Information Security;2020-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3