Abstract
Exploration of unknown environments is a fundamental problem in autonomous robotics that deals with the complexity of autonomously traversing an unknown area while acquiring the most important information of the environment. In this work, a mobile robot exploration algorithm for indoor environments is proposed. It combines frontier-based concepts with behavior-based strategies in order to build a topological representation of the environment. Frontier-based approaches assume that, to gain the most information of an environment, the robot has to move to the regions on the boundary between open space and unexplored space. The novelty of this work is in the semantic frontier classification and frontier selection according to a cost–utility function. In addition, a probabilistic loop closure algorithm is proposed to solve cyclic situations. The system outputs a topological map of the free areas of the environment for further navigation. Finally, simulated and real-world experiments have been carried out, their results and the comparison to other state-of-the-art algorithms show the feasibility of the exploration algorithm proposed and the improvement that it offers with regards to execution time and travelled distance.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference37 articles.
1. Automatic Planning of Manipulator Transfer Movements
2. Learned Navigation Paths for a Robot in Unexplored Terrain;Iyengar,1985
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献