Simulation of Particle Trajectories in Gas Turbine Components and Assessment of Unsteady Effects Using an Efficient Eulerian-Lagrangian Technique

Author:

Oliani Stefano1,Casari Nicola1,Pinelli Michele1,Carnevale Mauro2ORCID

Affiliation:

1. Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy

2. Department of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK

Abstract

In recent years, CFD has proven to be a very useful asset to help with predicting complex flows in a wide range of situations, including multiphase and gas-particle flows. On this track, numerical modelling of particle-laden flows in multistage turbomachinery has become an important step in helping to analyse the behaviour of a discrete phase in gas turbines. Furthermore, unsteady effects due, for example, to rotor–stator interaction may have an effect on trajectories and capture efficiencies of the discrete phase. Unfortunately, computational times for transient simulations can be exceedingly high, especially if a discrete-phase needs also to be simulated. For this reason, this work reports a new method for the efficient and accurate simulation of particle-laden flows in gas turbine engines components. The Harmonic Balance Method is exploited to gain orders of magnitude speedup exploiting the idea that once the flow field has been embedded in the spectral basis, it can be reconstructed at any desired time. In this way, not only can the computational time needed to reach convergence of the flow field be dramatically reduced, but there is also no need to keep simulating the flow field during particle tracking. On the contrary, the continuous phase field can be retrieved at any desired time through flow reconstruction. This technique is conceptually simple, but, to the authors’ knowledge, has never been applied so far in particle-laden flow simulations and represents a novelty in the field. First, the implementation of the method is described, and details are given on how phase-lagged boundary conditions can be applied to flow and particles to further speed up the calculation. Then, some relevant case studies are presented to highlight the performance of the method.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3