Operation of Gas Turbine Engines in an Environment Contaminated With Volcanic Ash

Author:

Dunn Michael G.1

Affiliation:

1. The Ohio State University,Gas Turbine Laboratory, OH 43235, Columbus e-mail:

Abstract

Airborne volcanic ash poses a significant threat to the safe operation of gas turbine powered aircraft. Recent volcanic activity in Iceland and other parts of the world have resulted in interruption of air traffic and in the case of the April 2010 eruption of the Eyjafjallajökull volcano in Iceland, the interruption resulted in a significant loss of revenue. Over the past 30 years there have been several events involving commercial aircraft that have suffered significant damage to the propulsion system as a result of ingesting volcanic ash during a flight event, but a relevant engine focused database to provide guidance for dealing with the problem has not been generally available until recently. In Sept. 2010 after the Iceland volcano activity, a body of data that had not been in the public domain was released and those measurements that are described in some detail herein can be helpful to the airlines, the aircraft manufacturers, the engine manufacturers, those responsible for flight operations, and hopefully to the flight crews. The intent of this paper is to describe some of the more notable aircraft/ash cloud events, the available data associated with those encounters and how those data can be used to effectively deal with this problem while maintaining safe flight operations. The paper specifically (a) illustrates the engine damage mechanisms, (b) estimates the potential operational life of a particular class of engines if the ash concentration is at a very low level, and (c) illustrates how this database is helpful in dealing with future interruptions of flight routes caused by volcanic eruptions. A section at the end of this paper provides the comments and concerns of the industry and government stakeholders regarding this general problem area.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3