Biodiesel Additives Synthesis Using Solid Heteropolyacid Catalysts

Author:

da Silva Marcio Jose1ORCID,Lopes Neide Paloma Gonçalves1,Rodrigues Alana Alves1

Affiliation:

1. Chemistry Department, Federal University of Viçosa, Viçosa 36590-000, Brazil

Abstract

Fossil additives are a primary energy source and their contribution is around 80% in the world. Therefore, bioadditives that reduce their impact are each very important. This article discusses the chemical transformation of glycerol to carbonate, ethers, esters, ketals, and acetals, compounds with high technological applications, especially in the fuel sector as bioadditives. Mainly, heterogeneous catalysts are important in the production of more than 80% of chemicals in the word. The focus is on demonstrating how the Keggin heteropolyacids (HPAs) are efficient catalysts in the reactions of syntheses of glycerol-derived bioadditives, either in homogeneous or heterogeneous phases. Although solid, HPAs have a low surface area and are soluble in polar solvents, hampering their use as heterogeneous catalysts. Alternatively, they have been successfully used supported on solid matrixes with a high surface area. Another option is converting the Keggin HPAs to insoluble salts simply by exchanging their protons with large cations like potassium, cesium, or ammonium-derivatives. Therefore, solid heteropoly salts have reduced the cost and the environmental impact of bioadditive synthesis processes, being an alternative to traditional mineral acids or solid-supported catalysts. This review describes the most recent advances achieved in the processes of synthesis of glycerol-derived bioadditives over solid-supported HPAs or their solid heteropoly salts.

Funder

Aperfeiçoamento de Pessoal de Nível Superior—Brasil

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3