Affiliation:
1. Department of Marine Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan
Abstract
The purity of crude glycerol, a by-product of biodiesel production, may be as low as 50%. Thus, it has relatively low economic value without previously applying adequate physical purification or chemical conversion processes. A solid-state sulfated acid photocatalyst, TiO2/SO42− was prepared in this study to catalyze the chemical conversion of bioglycerol with acetic acid to produce an antifreeze of glycerine acetate to improve the low-temperature fluidity of liquid fuel. The experimental results show that similar X-ray intensity structures appeared between the catalysts of TiO2/SO42− and SO42−. An infrared spectra analysis using a Fourier transform infrared (FTIR) spectrometer confirmed the successful sintering of SO42− and ligating with TiO2 for preparing TiO2/SO42−. The effects of the photocatalyst were further excited by the irradiation of ultraviolet light. The highest weight percentage of glycerine acetate was obtained under a reaction time and reaction temperature of 10 h and 120 °C, respectively. In addition, it was observed that the glycerol conversion ratio reached 98.65% and the triacylglycerols compound amounted to 40.41 wt.% when the reacting molar ratio was 8. Moreover, the freezing point of the product mixture of glycerine acetate under the same molar ratio reached as low as −46.36 °C; the lowest among the products made using various molar ratios of acetic acid/glycerol. The UV light irradiation rendered higher triacylglycerols and diacylglycerols with lower diacylglycerol formation ratios than those without light irradiation.
Funder
National Science and Technology Council, Taiwan
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献