The Karakoram Anomaly: Validation through Remote Sensing Data, Prospects and Implications

Author:

Attaullah Haleema,Khan Asif,Khan Mujahid,Khan FirdosORCID,Ali Shaukat,Masud Tabinda,Iqbal Muhammad ShahidORCID

Abstract

Millions of people rely on river water originating from snow- and ice-melt from basins in the Hindukush-Karakoram-Himalayas (HKH). One such basin is the Upper Indus Basin (UIB), where the snow- and ice-melt contribution can be more than 80%. Being the origin of some of the world’s largest alpine glaciers, this basin could be highly susceptible to global warming and climate change. Field observations and geodetic measurements suggest that in the Karakoram Mountains, glaciers are either stable or have expanded since 1990, in sharp contrast to glacier retreats that are prevalently observed in the Himalayas and adjoining high-altitude terrains of Central Asia. Decreased summer temperature and discharge in the rivers originating from this region are cited as supporting evidence for this somewhat anomalous phenomenon. This study used remote sensing data during the summer months (July–September) for the period 2000 to 2017. Equilibrium line altitudes (ELAs) for July, August and September have been estimated. ELA trends for July and September were found statistically insignificant. The August ELA declined by 128 m during 2000–2017 at a rate of 7.1 m/year, testifying to the Karakoram Anomaly concomitant with stable to mass gaining glaciers in the Hunza Basin (western Karakoram). Stable glaciers may store fresh water for longer and provide sustainable river water flows in the near to far future. However, these glaciers are also causing low flows of the river during summer months. The Tarbela reservoir reached three times its lowest storage level during June 2019, and it was argued this was due to the low melt of glaciers in the Karakoram region. Therefore, using remote sensing data to monitor the glaciers’ health concomitant with sustainable water resources development and management in the HKH region is urgently needed.

Funder

GCISC, Ministry of Climate Change, Pakistan

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3