Implications of Accuracy of Global Glacier Inventories in Hydrological Modeling: A Case Study of the Western Himalayan Mountain Range

Author:

Attaullah Haleema1,Khan Asif2,Khan Mujahid1,Atta Hadia3,Iqbal Muhammad Shahid4

Affiliation:

1. Department of Civil Engineering, University of Engineering and Technology, Peshawar 25000, Pakistan

2. Department of Civil Engineering, Jalozai Campus, University of Engineering and Technology, Peshawar 24210, Pakistan

3. Department of Mathematics, Islamia College, Peshawar 25000, Pakistan

4. International Water Management Institute (IWMI), Lahore 54800, Pakistan

Abstract

Alpine glaciers are a fundamental component of the cryosphere and are significantly sensitive to climate change. One such region is the Hindukush Karakoram Himalaya (HKH) and Tibetan Plateau (TP) region, which contains more than 40,000 glaciers. There are more than 12 glacier inventories available covering parts of (or the entire) HKH region, but these show significant uncertainties regarding the extent of glaciers. Researchers have used different glacier inventories without assessing their accuracy. This study, therefore, assessed the implications of the accuracy of global glacier inventories in hydrological modeling and future water resource planning. The accuracy assessment of most commonly used two global glacier inventories (Global Land Ice Monitoring from Space-GLIMS v 2.0 and Randolph Glacier Inventory-RGI v 6.0) has been carried out for three sub-basins of the Upper Indus Basin—the Swat, the Chitral, and the Kabul River basins (combined, this is referred to as the Great Kabul River Basin)—with a total basin area of 94,552.86 km2. Glacier outlines have been compared with various Landsat 7 ETM+, Landsat 8, high-resolution Google Earth images, and manually digitized debris-covered glacier outlines during different years. The total glacier area for the Great Kabul River Basin derived from RGI and GLIMS is estimated to be 2120.35 km2 and 1789.94 km2, respectively, which was a difference of 16.9%. Despite being sub-basins of the Great Kabul River Basin, the Swat, and the Chitral River basins were different by 54.74% and 19.71%, respectively, between the two inventories, with a greater glacierized area provided by RGI, whereas the Kabul River basin was different by 54.72%, with greater glacierized area provided by GLIMS. The results and analysis show that GLIMS underestimates glacier outlines in the Swat and the Chitral basins and overestimates glacier extents in the Kabul River basin. The underestimation is mainly due to the non-representation of debris-covered glaciers. The overestimation in GLIMS data is due to the digitization of seasonal snow as part of the glaciers. The use of underestimated GLIMS outlines may result in 5–10% underestimation of glacier-melt contribution to flows in the Swat River basin, while an underestimation of 7% to 15% is expected in the Chitral River Basin, all compared to RGI v 6.0 outlines. The overestimation of glacier-melt contribution to flows in the Kabul River basin is insignificant (1% to 2%) using GLIMS data. In summary, the use of the GLIMS inventory will lead to underestimated flows and show that the Great Kabul River Basin (particularly the Chitral River Basin) is less sensitive to climate change effects. Thus, the current study recommends the use of RGI v 6.0 (best glacier inventory) to revisit the existing biased hydro-climate studies and to improve future hydro-climate studies with the concomitant rectification of the MODIS snow coverage data. The use of the best glacier inventory will provide the best estimates of flow sensitivity to climate change and will result in well-informed decision-making, precise and accurate policies, and sustainable water resource management in the study area. The methodology adopted in the current study may also be used in nearby areas with similar hydro-climate conditions, as well as for the most recently released RGI v 7.0 data.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3