Computation of Time of Concentration Based on Two-Dimensional Hydraulic Simulation

Author:

Zolghadr Masih,Rafiee Mohamad R.ORCID,Esmaeilmanesh Fatemeh,Fathi Abazar,Tripathi Ravi PrakashORCID,Rathnayake UpakaORCID,Gunakala Sreedhar RaoORCID,Azamathulla Hazi MohammadORCID

Abstract

Time of concentration (TC) is a parameter in runoff estimation, used to study and design different types of projects in watersheds. Any error in TC calculation leads to an inaccurate estimation of the design flow, which can lead to over-sizing or under-sizing of designed facilities that can have great economic and environmental consequences. Therefore, choosing the correct method to estimate TC is of great importance. Due to the diversity of estimation methods in the literature, the obtained TC values are different. This study aims to present a new method to calculate TC, based on its main concept, i.e., the time required for a water parcel to reach its outlet from the farthest hydrological point of a watershed. A two-dimensional hydraulic simulation was used to model the water parcel travel. A watershed was selected as a case study, and its time of concentration was determined by salt solution tracing. The field measurement results were used for calibration of the numerical simulation model. Meanwhile, 31 empirical relations in the literature were reviewed to determine the most accurate ones. Estimated TC values were compared with the measured ones, and the relative error percentage was used to evaluate the accuracy of the result. In the empirical TC methods, the maximum error was above 300%, and the minimum error was 6.7% for the field studied area. The relative errors of hydraulic simulation outputs were between 3 and 27%. The results showed that only three empirical methods, namely Simas and Hawkins, SCSlag, and Yen and Chow, had the least errors respectively equal to 6.7%, 8.660%, and 13.5%, which can be recommended for the studied area and those with similar hydrological characteristics. On the other hand, hydraulic simulation is also introduced as an efficient method to determine TC which can be used in any desired watershed.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference44 articles.

1. Hydrologic Systems: Rainfall Runoff Modeling;Singh,1988

2. Hydrologic Analysis and Design;McCuen,1989

3. Evolution of Kinematic Wave Time of Concentration Formulas for Overland Flow

4. Time of concentration of small agricultural watersheds;Kirpich;Civ. Eng.,1940

5. A salt tracing method for measuring channel velocities in small mountain streams

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3