A Spatial–Seasonal Study on the Danube River in the Adjacent Danube Delta Area: Case Study—Monitored Heavy Metals

Author:

Topa Catalina12,Murariu Gabriel12,Calmuc Valentina12,Calmuc Madalina12,Arseni Maxim12ORCID,Serban Cecila23ORCID,Chitescu Carmen24ORCID,Georgescu Lucian12ORCID

Affiliation:

1. Faculty of Sciences and Environment, “Dunarea de Jos” University of Galati, 800008 Galati, Romania

2. Rexdan Research Infrastructure, “Dunarea de Jos” University of Galati, 800008 Galati, Romania

3. Department of Applied Sciences, Cross-Border Faculty, “Dunarea de Jos” University of Galati, 800008 Galati, Romania

4. Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, A.I. Cuza 35, 800010 Galati, Romania

Abstract

Monitoring and protecting flowing watercourses is a complex and challenging task that requires the collaboration and coordination of various stakeholders such as governments, industries, farmers, consumers and environmental groups. The study of the dynamics of the concentration of polluting factors and especially the concentrations of heavy metals and highlighting a seasonal variation is a necessary element from this point of view. In this article, we present the results of our analyses carried out in two measurement campaigns executed in 10 monitoring points along the Danube River, between Braila city and Isaccea city in the pre-deltaic area, during the summer season and autumn season 2022. The importance of this area is given by the fact that the Danube Delta is part of the UNESCO heritage, and the monitoring of polluting factors is a necessity in the desire to protect this area. The data measured during the July and August 2022 campaign cover a wide range of chemical species: Phosphate, CCO, CBO5, NH4+, N-NO2, N-NO3−, N-Total, P-PO4 3−, SO42−, Cl−, phenols, as well as metals with a harmful effect: Al, As, Cd, Cr, Fe. The study includes an evaluation based on the statistical approach of the results to highlight the significant correlations and differences identified between the two data sets. Next, to highlight the obtained results, a numerical model was considered using HEC-RAS and ESRI ArcGIS applications in a two-dimensional unsteady flow model in order to obtain the non-homogenous concentrations’ distributions in the studied area. These two-dimensional models have been less studied in the specialized literature. In this way, interesting results could be obtained, and prediction methods regarding the dynamics of metal concentrations could be structured. The data obtained were used for the terrain model from the USGS service, and the flows of the Danube and its two tributaries were simulated using the data provided by the national services. In this work, we present the results obtained for the dynamics of the concentrations of the metals Al, As, Cd, Cr and Fe and the evaluation of the specific absorption coefficients for the explanation and correlation with the results of the measurements. Except for the numerical model presented, we would like to highlight the existence of some contributions of the main tributaries of the Danube in the study area. Such a systematic study has not been carried out due to conditions imposed by the border authorities. From this point of view, this study has an element of originality. The study is part of a more complex project in which the spatio-temporal distribution of the polluting factors in the water was evaluated, and the habitats in the study area were inventoried—especially those of community interest. In this way, we were able to expose the self-purification capacity of the Danube and highlight the existence of a concentration reduction gradient along the course of the river. The aspects related to the influence of the distribution of polluting factors on the state of health will be the subject of another article.

Funder

the project “Advanced nanotechnology based approaches to waste water purification form organic pollutants and their monitoring in water bodies”

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3