Multi-Camera Vehicle Tracking Using Edge Computing and Low-Power Communication

Author:

Nikodem MaciejORCID,Słabicki MariuszORCID,Surmacz TomaszORCID,Mrówka Paweł,Dołęga Cezary

Abstract

Typical approaches to visual vehicle tracking across large area require several cameras and complex algorithms to detect, identify and track the vehicle route. Due to memory requirements, computational complexity and hardware constrains, the video images are transmitted to a dedicated workstation equipped with powerful graphic processing units. However, this requires large volumes of data to be transmitted and may raise privacy issues. This paper presents a dedicated deep learning detection and tracking algorithms that can be run directly on the camera’s embedded system. This method significantly reduces the stream of data from the cameras, reduces the required communication bandwidth and expands the range of communication technologies to use. Consequently, it allows to use short-range radio communication to transmit vehicle-related information directly between the cameras, and implement the multi-camera tracking directly in the cameras. The proposed solution includes detection and tracking algorithms, and a dedicated low-power short-range communication for multi-target multi-camera tracking systems that can be applied in parking and intersection scenarios. System components were evaluated in various scenarios including different environmental and weather conditions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A hybrid vehicle tracking System for Low-power Embedded Devices;2024 International Conference on Circuit, Systems and Communication (ICCSC);2024-06-28

2. Multi-camera Vehicle Tracking and Recognition with Multimodal Contrastive Domain Sharing GAN and Topological Embeddings;Journal of Electrical Systems;2024-04-04

3. Proposition of Augmenting V2X Roadside Unit to Enhance Cooperative Awareness of Heterogeneously Connected Road Users;Lecture Notes in Networks and Systems;2024

4. Automated Lane-Level Road Geometry Estimation Using Microscopic Trajectory Data;Journal of Advanced Transportation;2023-12-11

5. Target Detection and Tracking for Vehicles in Tourist Sites Based on Image Recognition;2023 2nd International Conference on Cloud Computing, Big Data Application and Software Engineering (CBASE);2023-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3