Automated Lane-Level Road Geometry Estimation Using Microscopic Trajectory Data

Author:

Wang Junhua1ORCID,Li Chengmin1ORCID,Fu Ting1ORCID,Zhang Lanfang1ORCID,Sobhani Anae2,Xue Jiangtian1

Affiliation:

1. The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai, China

2. Barney School of Business, University of Hartford, West Hartford, USA

Abstract

Vehicle trajectory data is in high demand for transportation research due to its rich detail. Lane information is an important aspect of trajectory data, which is typically obtained using sensors such as cameras or LiDAR, which are able to extract road lane features. However, some sensors for trajectory tracking (e.g., MMW radar sensors) are unable to provide lane information. Vehicle detection and trajectory tracking systems based on these sensing technologies can integrate with lane information through manual calibration during initial installation, but this process is labor-intensive and requires frequent recalibration as the sensors gradually become deviated by wind and vibration. This has posed a challenge for trajectory tracking, particularly for real-time applications. To address this challenge, this paper proposes a method for estimating lane-level road geometrics using microscopic trajectory data. The method involves segmenting the trajectory points using direction vectors and clustering them and fitting a series of cluster center points. The mean error (ME) of the distance between the estimated result and the ground truth reference is used to measure the accuracy of the lane-level road geometrics estimation in different conditions. Results show that when the average trajectory data includes at least approximately 30 points per meter in each segment, the ME is always less than 0.1 m. The method has also been tested on MMW wave radar data and found to be effective. This demonstrates the feasibility of our approach for dynamic calibration of road alignment in vehicle trajectory tracking systems.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3