An Improved Step-Type Liquid Level Sensing System for Bridge Structural Dynamic Deflection Monitoring

Author:

Ye XijunORCID,Sun Zhuo,Cai Xu,Mei LiuORCID

Abstract

Real-time and accurate monitoring of dynamic deflection is of great significance for health monitoring and condition assessment of bridge structures. This paper proposes an improved step-type liquid level sensing system (LLSS) for dynamic deflection monitoring. Layout of straight-line-type pipeline is replaced by step-type pipeline in this improved deflection monitoring system, which can remove the interference of the inclination angle on the measurement accuracy and is applicable for dynamic deflection monitoring. Fluid dynamics are first analyzed to demonstrate that measurement accuracy is interfered with by the fluid velocity induced by structural vibration, and ANSYS-FLOTRAN is applied for analyzing the influence range caused by the turbulent flow. Finally, a step-type LLSS model is designed and experimented with to verify the influence of the three key parameters (initial displacement excitation, step height, and distance from the measurement point to the elbow) on the measurement accuracy, and the reasonable placement scheme for the measurement point is determined. The results show that the measurement accuracy mainly depends on the turbulent flow caused by step height. The measurement error gets smaller after about 1.0 m distance from the elbow. To ensure that the measurement error is less than 6%, the distance between the measurement point and the elbow should be larger than 1.0 m.

Funder

the Shenzhen Science, Technology and Innovation Commission (SZSTI) Basic Research Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3