Automation of structural health monitoring (SHM) system of a bridge using BIMification approach and BIM-based finite element model development

Author:

Fawad Muhammad,Salamak Marek,Poprawa Grzegorz,Koris Kalman,Jasinski Marcin,Lazinski Piotr,Piotrowski Dawid,Hasnain Muhammad,Gerges Michael

Abstract

AbstractThis research focuses on the automation of an existing structural health monitoring system of a bridge using the BIMification approach. This process starts with the Finite Element Analysis (FEA) of an existing bridge for the numerical calculations of static and dynamic parameters. The validation of the FE model and existing SHM system was carried out by the field load testing (Static and dynamic) of the bridge. Further, this study tries to fill the research gap in the area of automatic FE model generation by using a novel methodology that can generate a BIM-based FE model using Visual Programming Language (VPL) scripts. This script can be exported to any FE software to develop the geometry of the FE model. Moreover, the SHM devices are deployed to the Building Information modelling (BIM) model of the bridge to generate the BIM-based sensory model (as per the existing SHM system). In this way, the BIM model is used to manage and monitor the SHM system and control its sensory elements. These sensors are then linked with the self-generated (Internet of Things) IoT platform (coded in Arduino), developing a smart SHM system of the bridge. Resultantly, the system features visualisation and remote accessibility to bridge health monitoring data.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3