Remote Sensing-Guided Sampling Design with Both Good Spatial Coverage and Feature Space Coverage for Accurate Farm Field-Level Soil Mapping

Author:

Wang YongjiORCID,Jiang Lili,Qi Qingwen,Liu Ying,Wang Jun

Abstract

With the increasing requirements of precision agriculture for massive and various kinds of data, remote sensing technology has become indispensable in acquiring the necessary data for precision agriculture. Understanding the spatial variability of a target soil variable (i.e., soil mapping) is a critical issue in solving many agricultural problems. Field sampling is one of the most commonly used technologies for soil mapping, but sample sizes are restricted by resources, such as field labor, soil physicochemical analysis, and funding. In this paper, we proposed a sampling design method with both good spatial coverage and feature space coverage to achieve more precise spatial variability of farm field-level target soil variables for limited sample sizes. The proposed method used the super-grid to achieve good spatial coverage, and it took advantage of remote sensing products that were highly correlated with the target soil property (SOM content) to achieve good feature space coverage. For the experiments, we employed the ordinary kriging (OK) method to map the soil organic matter (SOM) content. The different sized super-grid comparison experiments showed that the 400 × 400 m2 super-grid had the highest SOM content mapping accuracy. Then, we compared the proposed method to regular grid sampling (good spatial coverage) and k-means sampling (good feature space coverage), and the experimental results indicated that the proposed method had greater potential in the selection of representative samples that could improve the SOM content mapping accuracy.

Funder

the National Key Research and Development Program of China

the Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference73 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3