Robust and Fair Undersea Target Detection with Automated Underwater Vehicles for Biodiversity Data Collection

Author:

Dinakaran RanjithORCID,Zhang LiORCID,Li Chang-Tsun,Bouridane Ahmed,Jiang Richard

Abstract

Undersea/subsea data collection via automated underwater vehicles (AUVs) plays an important role for marine biodiversity research, while it is often much more challenging than the data collection above ground via satellites or AUVs. To enable the automated undersea/subsea data collection system, the AUVs are expected to be able to automatically track the objects of interest through what they can “see” from their mounted underwater cameras, where videos or images could be drastically blurred and degraded in underwater lighting conditions. To solve this challenge, in this work, we propose a cascaded framework by combining a DCGAN (deep convolutional generative adversarial network) with an object detector, i.e., single-shot detector (SSD), named DCGAN+SSD, for the detection of various underwater targets from the mounted camera of an automated underwater vehicle. In our framework, our assumption is that DCGAN can be leveraged to alleviate the impact of underwater conditions and provide the object detector with a better performance for automated AUVs. To optimize the hyperparameters of our models, we applied a particle swarm optimization (PSO)-based strategy to improve the performance of our proposed model. In our experiments, we successfully verified our assumption that the DCGAN+SSD architecture can help improve the object detection toward the undersea conditions and achieve apparently better detection rates over the original SSD detector. Further experiments showed that the PSO-based optimization of our models could further improve the model in object detection toward a more robust and fair performance, making our work a promising solution for tackling the challenges in AUVs.

Funder

Engineering and Physical Sciences Research Council

Leverhulme Trust

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of recent techniques in marine object detection: a review;Multimedia Tools and Applications;2024-07-11

2. PE-Transformer: Path enhanced transformer for improving underwater object detection;Expert Systems with Applications;2024-07

3. Visual Ship Image Synthesis and Classification Framework Based on Attention-DCGAN;International Journal of Computational Intelligence Systems;2024-06-10

4. Accurate detection of underwater objects using EfficientNet Algorithm;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

5. Nonchemical Aquatic Weed Control Methods: Exploring the Efficacy of UV-C Radiation as a Novel Weed Control Tool;Plants;2024-04-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3