Generalized Asymmetric Correntropy for Robust Adaptive Filtering: A Theoretical and Simulation Study

Author:

Qu Hua,Wang MengORCID,Zhao Jihong,Zhao ShuyuanORCID,Li Taihao,Yue PengchengORCID

Abstract

Correntropy has been proved to be effective in eliminating the adverse effects of impulsive noises in adaptive filtering. However, correntropy is not desirable when the error between the two random variables is asymmetrically distributed around zero. To address this problem, asymmetric correntropy using an asymmetric Gaussian function as the kernel function was proposed. However, an asymmetric Gaussian function is not always the best choice and can be further expanded. In this paper, we propose a robust adaptive filtering based on a more flexible definition of asymmetric correntropy, which is called generalized asymmetric correntropy that adopts a generalized asymmetric Gaussian density (GAGD) function as the kernel. With the shape parameter properly selected, the generalized asymmetric correntropy may get better performance than the original asymmetric correntropy. The steady-state performance of the adaptive filter based on the generalized maximum asymmetric correntropy criterion (GMACC) is theoretically studied and verified by simulation experiments. The asymmetric characteristics of queue delay in satellite networks is analyzed and described, and the proposed algorithm is used to predict network delay, which is essential in space telemetry. Simulation results demonstrate the desirable performance of the new algorithm.

Funder

National Key Research and Development Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference45 articles.

1. Adaptive Signal Processing;Widrow,2008

2. Adaptive Filter Theory;Haykin,2002

3. Robust Regression and Outlier Detection;Rousseeuw,2005

4. Least mean M-estimate algorithms for robust adaptive filtering in impulse noise;Zou;IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process.,2000

5. A Recursive Least M-Estimate Algorithm for Robust Adaptive Filtering in Impulsive Noise: Fast Algorithm and Convergence Performance Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3