Author:
Peng Jiandong,Cui Changwei,Qi Jiajie,Ruan Zehan,Dai Qi,Yang Hong
Abstract
The expansion of the rail transit network has a positive impact on travel characteristics under spatial and temporal constraints by changing accessibility. However, few empirical studies have examined the longitudinal evolution of the impact of accessibility and travel characteristics. In this paper, a model of the Wuhan rail transit network is constructed and the evolution of the spatial pattern of accessibility over different periods is analyzed. The correlation of accessibility with rail transit travel characteristics is studied longitudinally to provide theoretical support for rail transit construction and traffic demand management. The study shows that: (1) Wuhan’s rail transit network has evolved from a tree to a ring, improving the operational efficiency. (2) The accessibility of Wuhan’s rail transit network has evolved into a circular structure, showing a decreasing trend away from the city center. (3) The change of accessibility greatly affects travel characteristics. The higher the accessibility, the higher the traffic volume, and the lower the travel frequency, the more residents travel during peak hours, and the shorter the travel distance. These findings are useful for gaining insight into public transportation demand in large cities, and thus for developing reasonable transportation demand management policies.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献