Hub Node Identification in Urban Rail Transit Network Evolution Using a Ridership-Weighted Network

Author:

Tian Tian1,Cheng Yanqiu1ORCID,Liang Yichen1,Ma Chen1,Chen Kuanmin1,Hu Xianbiao2ORCID

Affiliation:

1. College of Transportation Engineering, Chang’an University, Xi’an, Shaanxi, China

2. Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA

Abstract

With the development of the urban rail transit network (URTN), the network structure and performance have changed, and the node importance has also been redistributed. However, little research has been done on how hub nodes change as the network develops over a lengthy period. Moreover, most hub node identification methods only focus on the analysis of topological networks or single-dimension measurements, resulting in inaccurate identification results. To overcome the above limitations, a novel method of hub node identification is proposed. Based on the ridership-weighted network model, the node centrality and reliability are aggregated to quantify the weighted comprehensive importance of the nodes. Furthermore, network invulnerability measurement is used to demonstrate the effectiveness of the proposed method. This method is applied to the Xi’an Urban Rail Transit Network (XURTN) from 2011 to 2021. With the XURTN’s development, its connectivity, balance, and fault tolerance have improved. After the basic network skeleton was formed, the number and proportion of hub nodes increased steadily. By comparing the spatial characteristics of the identified hub nodes over two successive periods, it can be found that the evolution direction of the hub nodes is correlated with the type of new lines and coincides also with the development direction of the urban area. In addition, the node orders of the proposed method have a greater impact on the network vulnerability, in which the network-weighted efficiency [Formula: see text] decreases faster and more dramatically, that is, 1.17%–45.75% more than that of other methods. Overall, this study provides a basis for the URTN and station planning and management.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3