Active Exploration for Obstacle Detection on a Mobile Humanoid Robot

Author:

Nobile LucaORCID,Randazzo Marco,Colledanchise Michele,Monorchio Luca,Villa Wilson,Puja Francesco,Natale Lorenzo

Abstract

Conventional approaches to robot navigation in unstructured environments rely on information acquired from the LiDAR mounted on the robot base to detect and avoid obstacles. This approach fails to detect obstacles that are too small, or that are invisible because they are outside the LiDAR’s field of view. A possible strategy is to integrate information from other sensors. In this paper, we explore the possibility of using depth information from a movable RGB-D camera mounted on the head of the robot, and investigate, in particular, active control strategies to effectively scan the environment. Existing works combine RGBD-D and 2D LiDAR data passively by fusing the current point-cloud from the RGB-D camera with the occupancy grid computed from the 2D LiDAR data, while the robot follows a given path. In contrast, we propose an optimization strategy that actively changes the position of the robot’s head, where the camera is mounted, at each point of the given navigation path; thus, we can fully exploit the RGB-D camera to detect, and hence avoid, obstacles undetected by the 2D LiDAR, such as overhanging obstacles or obstacles in blind spots. We validate our approach in both simulation environments to gather statistically significant data and real environments to show the applicability of our method to real robots. The platform used is the humanoid robot R1.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tour guide robot: a 5G-enabled robot museum guide;Frontiers in Robotics and AI;2024-01-16

2. Image-Based Obstacle Detection Methods for the Safe Navigation of Unmanned Vehicles: A Review;Remote Sensing;2022-08-08

3. Autonomous Navigation for Mobile Robots with Sensor Fusion Technology;Lecture Notes in Mechanical Engineering;2022-07-24

4. MoDeT: a low-cost obstacle tracker for self-driving mobile robot navigation using 2D-laser scan;Industrial Robot: the international journal of robotics research and application;2022-02-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3