A Multi-Semantic Driver Behavior Recognition Model of Autonomous Vehicles Using Confidence Fusion Mechanism

Author:

Ren Hongze,Guo Yage,Bai Zhonghao,Cheng Xiangyu

Abstract

With the rise of autonomous vehicles, drivers are gradually being liberated from the traditional roles behind steering wheels. Driver behavior cognition is significant for improving safety, comfort, and human–vehicle interaction. Existing research mostly analyzes driver behaviors relying on the movements of upper-body parts, which may lead to false positives and missed detections due to the subtle changes among similar behaviors. In this paper, an end-to-end model is proposed to tackle the problem of the accurate classification of similar driver actions in real-time, known as MSRNet. The proposed architecture is made up of two major branches: the action detection network and the object detection network, which can extract spatiotemporal and key-object features, respectively. Then, the confidence fusion mechanism is introduced to aggregate the predictions from both branches based on the semantic relationships between actions and key objects. Experiments implemented on the modified version of the public dataset Drive&Act demonstrate that the MSRNet can recognize 11 different behaviors with 64.18% accuracy and a 20 fps inference time on an 8-frame input clip. Compared to the state-of-the-art action recognition model, our approach obtains higher accuracy, especially for behaviors with similar movements.

Funder

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference29 articles.

1. Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Causation Survey;Singh,2015

2. Driver crash risk factors and prevalence evaluation using naturalistic driving data

3. Analysis of the Possibilities of Using a Driver’s Brain Activity to Pneumatically Actuate a Secondary Foot Brake Pedal

4. Secondary task engagement and vehicle automation – Comparing the effects of different automation levels in an on-road experiment

5. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles;International,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3