The Prediction of Quality Parameters of Craft Beer with FT-MIR and Chemometrics

Author:

Meza-Márquez Ofelia Gabriela1ORCID,Rodríguez-Híjar Andrés Ricardo1,Gallardo-Velázquez Tzayhri2,Osorio-Revilla Guillermo1,Ramos-Monroy Oswaldo Arturo1

Affiliation:

1. Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas-Zacatenco, Av. Wilfrido Massieu S/N, Esq. Cda. Miguel Stampa, Col. Unidad Profesional Adolfo López Mateos, Zacatenco, Alcaldía Gustavo A. Madero, Ciudad de México C.P. 07738, Mexico

2. Departamento de Biofísica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas-Santo Tomás, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Ciudad de México C.P. 11340, Mexico

Abstract

Beer is one of the oldest and most known alcoholic beverages whose organoleptic characteristics are the attributes that the consumer seeks, which is why it is essential to ensure proper quality control of the final product. Fourier transform mid-infrared (FT-MIR) spectroscopy coupled with multivariate analysis can be an alternative to traditional methods to predict quality parameters in craft beer. This study aims to develop prediction models based on FT-MIR spectroscopy to simultaneously quantify quality parameters (color, specific gravity, alcohol volume, bitterness, turbidity, pH, and total acidity) in craft beer. Additionally, principal component analysis (PCA) was applied, and it was possible to classify craft beer samples according to their style. Partial least squares (PLS1) developed the best predictive model by obtaining higher R2c (0.9999) values and lower standard error of calibration (SEC: 0.01–0.11) and standard error of prediction (SEP: 0.01–0.14) values in comparison to the models developed with the other algorithms. Specific gravity could not be predicted due to the low variability in the values. Validation and prediction with external samples confirmed the predictive capacity of the developed model. By making a comparison to traditional techniques, FT-MIR coupled with multivariate analysis has a higher advantage, since it is rapid (approximately 6 min), efficient, cheap, and eco-friendly because it does not require the use of solvents or reagents, representing an alternative to simultaneously analyzing quality parameters in craft beer.

Funder

Instituto Politécnico Nacional

Consejo Nacional de Humanidades, Ciencias y Tecnología

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3