Feasibility of Using a Cheap Colour Sensor to Detect Blends of Vegetable Oils in Avocado Oil

Author:

Lorenzo Natasha D.1,da Rocha Roney A.2,Papaioannou Emmanouil H.3ORCID,Mutz Yhan S.2,Tessaro Leticia L. G.1,Nunes Cleiton A.2ORCID

Affiliation:

1. Department of Chemistry, Federal University of Lavras, P.O. Box 3037, Lavras 37203-202, MG, Brazil

2. Department of Food Science, Federal University of Lavras, P.O. Box 3037, Lavras 37203-202, MG, Brazil

3. School of Engineering, Lancaster University, Lancaster LA1 4YW, UK

Abstract

This proof-of-concept study explored the use of an RGB colour sensor to identify different blends of vegetable oils in avocado oil. The main aim of this work was to distinguish avocado oil from its blends with canola, sunflower, corn, olive, and soybean oils. The study involved RGB measurements conducted using two different light sources: UV (395 nm) and white light. Classification methods, such as Linear Discriminant Analysis (LDA) and Least Squares Support Vector Machine (LS-SVM), were employed for detecting the blends. The LS-SVM model exhibited superior classification performance under white light, with an accuracy exceeding 90%, thus demonstrating a robust prediction capability without evidence of random adjustments. A quantitative approach was followed as well, employing Multiple Linear Regression (MLR) and LS-SVM, for the quantification of each vegetable oil in the blends. The LS-SVM model consistently achieved good performance (R2 > 0.9) in all examined cases, both for internal and external validation. Additionally, under white light, LS-SVM models yielded root mean square errors (RMSE) between 1.17–3.07%, indicating a high accuracy in blend prediction. The method proved to be rapid and cost-effective, without the necessity of any sample pretreatment. These findings highlight the feasibility of a cost-effective colour sensor in identifying avocado oil blended with other oils, such as canola, sunflower, corn, olive, and soybean oils, suggesting its potential as a low-cost and efficient alternative for on-site oil analysis.

Funder

Coordination of Superior Level Staff Improvement—CAPES

CAPES Print Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3