Dry Ball-Milled Quinoa Starch as a Pickering Emulsifier: Preparation, Microstructures, Hydrophobic Properties and Emulsifying Properties

Author:

Chen Ying1,Han Xue1,Chen Dong-Ling1,Ren Yi-Ping1,Yang Shi-Yu1,Huang Yu-Xuan1,Yang Jie1ORCID,Zhang Liang1

Affiliation:

1. School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou 225127, China

Abstract

This research supplied a “cleaner-production” way to produce “clean-label” quinoa starch-based Pickering emulsifier with excellent emulsifying properties. The effects of dry ball-milling time and speed on the multi-scale structures and emulsifying properties of quinoa starch were studied. With increasing ball-milling time and speed, particle size first decreased and then increased, the crystallinity, lamellar structure and short-range ordered structure gradually decreased, and contact angle gradually increased. The increased contact angle might be related to the increased oil absorption properties and the decreased water content. The emulsification properties of ball-milled quinoa starch (BMQS)-based Pickering emulsions increased with the increase in ball-milling time and speed, and the emulsions of BMQS-4 h, 6 h, 8 h, and 600 r reached the full emulsification state. After 120 days’ storage, the oil droplets of BMQS-2 h (BMQS-400 r) deformed, the oil droplets increased, and the emulsification index decreased. The emulsification index and the oil droplets of BMQS-4 h, 6 h, 8 h and 600 r-based emulsions did not show obvious changes after storage, indicating the good emulsifying stability of these BMQS-based emulsions, which might be because that the relatively larger amount of starch particles that dispersed in the voids among the oil droplets could act as stronger network skeletons for the emulsion gel. This Pickering emulsifier was easily and highly efficiently produced and low-cost, having great potential to be used in the food, cosmetic and pharmaceutical industries.

Funder

High Level Talent Support Program of Yangzhou University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3