Preparation of Edible Colorant Lake Using Calcium Carbonate and β-Carotene: Structural Characterization and Formation Mechanism Study

Author:

Liu Yuhan123,Jing Le123,Cui Jiaqi123,Yuan Dongdong123ORCID,Wang Chengtao123

Affiliation:

1. Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China

2. Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China

3. China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China

Abstract

This study prepared a novel β-carotene colorant lake using calcium carbonate (CaCO3) and investigated the lake formation process and its basic characteristics. Kinetic adsorption analysis confirmed that medium pH (9.3) and medium temperature (40 °C) were more suitable for lake preparation, while desorption occurred, possibly due to crystalline transformation of CaCO3. The isothermal analysis and model fitting results suggested that the β-carotene and CaCO3 particles combined via a monolayer adsorption process driven by physical force. Electrostatic attraction likely participated in the process due to the net negative surface charges of β-carotene dispersion and positively charged groups on the CaCO3 particle surfaces. Ethanol, ultrasonic treatment, and drying method significantly influenced the immobilization efficiency (IE) of β-carotene in the lake and light stability of the lake, without affecting its crystal form. The thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves confirmed absorption of β-carotene onto CaCO3. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses indicated no obvious chemical bonds between β-carotene and CaCO3. Energy-dispersive spectroscopy (EDS) confirmed the presence of β-carotene on surfaces but not in the interior of the CaCO3 particles. The adsorption of β-carotene by calcium carbonate was further confirmed to be a physical adsorption on surface.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3