Metabolic and Bioprocess Engineering of Clostridium tyrobutyricum for Butyl Butyrate Production on Xylose and Shrimp Shell Waste

Author:

Wang Hao1,Chen Yingli1,Yang Zhihan1,Deng Haijun2,Liu Yiran2,Wei Ping1,Zhu Zhengming2,Jiang Ling23ORCID

Affiliation:

1. College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China

2. College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China

3. State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China

Abstract

Microbial conversion of agri-food waste to valuable compounds offers a sustainable route to develop the bioeconomy and contribute to sustainable biorefinery. Clostridium tyrobutyricum displays a series of native traits suitable for high productivity conversion of agri-food waste, which make it a promising host for the production of various compounds, such as the short-chain fatty acids and their derivative esters products. In this study, a butanol synthetic pathway was constructed in C. tyrobutyricum, and then efficient butyl butyrate production through in situ esterification was achieved by the supplementation of lipase into the fermentation. The butyryl-CoA/acyl-CoA transferase (cat1) was overexpressed to balance the ratio between precursors butyrate and butanol. Then, a suitable fermentation medium for butyl butyrate production was obtained with xylose as the sole carbon source and shrimp shell waste as the sole nitrogen source. Ultimately, 5.9 g/L of butyl butyrate with a selectivity of 100%, and a productivity of 0.03 g/L·h was achieved under xylose and shrimp shell waste with batch fermentation in a 5 L bioreactor. Transcriptome analyses exhibited an increase in the expression of genes related to the xylose metabolism, nitrogen metabolism, and amino acid metabolism and transport, which reveal the mechanism for the synergistic utilization of xylose and shrimp shell waste. This study presents a novel approach for utilizing xylose and shrimp shell waste to produce butyl butyrate by using an anaerobic fermentative platform based on C. tyrobutyricum. This innovative fermentation medium could save the cost of nitrogen sources (~97%) and open up possibilities for converting agri-food waste into other high-value products.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3