Effects of Extrusion Technology on Physicochemical Properties and Microstructure of Rice Starch Added with Soy Protein Isolate and Whey Protein Isolate

Author:

Liu Xiaofei1,Zhao Xiangxiang1,Ma Chunmin1,Wu Ming1,Fan Qiqi1,Fu Yu2,Zhang Guang1,Bian Xin1,Zhang Na1ORCID

Affiliation:

1. College of Food Engineering, Harbin University of Commerce, Harbin 150028, China

2. College of Food Science, Southwest University, Chongqing 400715, China

Abstract

In order to improve the retrogradation of rice starch (RS) and the quality of rice products, soy protein isolate (SPI), whey protein isolate (WPI), and rice flour were mixed and further extruded into mixed flour. The physicochemical properties and morphology of starch of extruded rice flour (ERS) and starch of extruded mixtures of SPI, WPI, and rice flour (SPI-WPI-ERS) were analyzed. The distribution of amylopectin chain length, molecular weight, microstructure, crystallinity, short-range ordered structure, pasting properties, and thermodynamic properties of RS, ERS, and SPI-WPI-ERS were measured. The results showed that, compared with rice starch, the proportion of long-chain starch, total starch content, and molecular weight were decreased in ERS and SPI-WPI-ERS, but the proportion of short-chain and amylose content was increased. The short-range order structure was destroyed. The water absorption of ERS and SPI-WPI-ERS was much higher than rice starch at 55 °C, 65 °C, and 75 °C, but lower than that of rice starch at 95 °C. Therefore, the retrogradation characteristics of SPI-WPI-ERS were improved. The setback of rice starch products was reduced and the setback of SPI-WPI-ERS was lower than that of ERS. Overall, the retrogradation of rice starch was delayed by adding exogenous protein and extrusion technology, and the application range of rice flour in staple food products was broadened.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3