Construction and Properties of Oil-Loaded Soybean Protein Isolate/Polysaccharide-Based Meat Analog Fibers

Author:

Zeng Xinyue12,Cui Bing12,Wu Di12ORCID,Li Jing12,Liang Hongshan12,Zhou Bin3ORCID,Li Bin124

Affiliation:

1. College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

2. Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China

3. Key Laboratory of Fermentation Engineering, Ministry of Education, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China

4. Functional Food Engineering & Technology Research Center of Hubei Province, Wuhan 430070, China

Abstract

Rationally designing the fibrous structure of artificial meat is a challenge in enriching the organoleptic quality of meat analogs. High-quality meat analog fibers have been obtained by wet-spinning technique in our previous study, whereas introducing oil droplets will further achieve their fine design from the insight of microstructure. Herein, in this current work, oil was introduced to the soybean protein isolate/polysaccharide-based meat analog fibers by regulating the oil droplets’ size and content, which, importantly, controlled the spinning solution characterization as well as structure-related properties of the meat analog fiber. Results showed that the oil dispersed in the matrix as small droplets with regular shapes, which grew in size as the oil content increased. Considering the effect of oil droplets’ size and content on the spinnability of the spinning solution, the mechanical stirring treatment was chosen as the suitable treatment method. Importantly, increasing the oil content has the potential to enhance the juiciness of meat analog fibers through improvements in water-holding capacity and alterations in water mobility. Overall, the successful preparation of oil-loaded plant-based fiber not only mimicked animal muscle fiber more realistically but also provided a general platform for adding fat-soluble nutrients and flavor substances.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3