Variations in Key Aroma Compounds and Aroma Profiles in Yellow and White Cultivars of Flammulina filiformis Based on Gas Chromatography–Mass Spectrometry–Olfactometry, Aroma Recombination, and Omission Experiments Coupled with Odor Threshold Concentrations

Author:

Song Wei1,Sun Min1,Lu Huan2,Wang Shengyou34,Wang Ruijuan2,Shang Xiaodong2,Feng Tao1ORCID

Affiliation:

1. School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China

2. Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China

3. Institute of Edible Fungi, Sanming Academy of Agricultural Sciences, Sanming 365000, China

4. Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China

Abstract

Flammulina filiformis (F. filiformis) is called the ‘benefiting intelligence’ mushroom. There is a notable difference between a yellow cultivar (with a robust aroma) and a white mutant cultivar (with a high yield) of F. filiformis. A thorough analysis of aroma differences is essential to improve the aroma of high-yield strains. This study employed a combination of gas chromatography–mass spectrometry–olfactometry (GC-MS-O) and aroma extract dilution analysis (AEDA) to analyze the variations in aroma compounds. Then, the contribution of the odorants was determined using flavor dilution (FD) factors and odor activity values (OAVs). Aroma omission and recombination experiments were used to identify the key odorants. A total of 16 key aroma compounds were characterized in F. filiformis, along with four eight-carbon volatiles (3-octanone, 3-octanol, octanal, and 1-octen-3-ol). Finally, the dominant aroma characteristic was “sweet” for the yellow strain, while it was “green” for the white strain. More research is required to investigate the enzymes and corresponding genes that regulate the synthesis of aroma compounds in F. filiformis for future breeding programs.

Funder

agricultural science and technology project of Shanghai 2021 “Science and Technology Innovation Action Plan”

Shanghai academy of agricultural sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3