High Internal Phase Emulsions Stabilized with Ultrasound-Modified Spirulina Protein for Curcumin Delivery

Author:

Liu Qing12,Chen Tao12,Chen Lihang12,Zhao Runan3ORCID,Ye Ximei12,Wang Xinchuang12,Wu Di12,Hu Jiangning12

Affiliation:

1. State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China

2. School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China

3. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China

Abstract

Spirulina protein (SP) is recognized as a nutritious edible microbial protein and holds potential as a natural emulsifier. Due to the inherent challenges SP faces in stabilizing high internal phase emulsions (HIPEs), ultrasonic techniques were utilized for modification. Noticeable alterations in the structural and functional properties of SP were observed following ultrasonic treatment at various power levels (0, 100, 300, and 500 W). Ultrasound treatment disrupted non-covalent interactions within the protein polymer structure, leading to the unfolding of molecular structures and the exposure of hydrophobic groups. Importantly, the particle size of SP was reduced the most at an ultrasonic power of 300 W, and the three-phase contact angle reached its peak at 84.3°. The HIPEs stabilized by SP modified with 300 W ultrasonication have high apparent viscosity and modulus values and strong storage stability under different environmental conditions. Additionally, the encapsulation of curcumin in HIPEs led to improved retention of curcumin across various settings. The bioavailability increased to 35.36, which is 2.8 times higher than the pure oil. These findings suggest that ultrasound-modified SP is a promising emulsifier for HIPEs, and is expected to encapsulate hydrophobic nutrients such as curcumin more effectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3