Affiliation:
1. State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
Abstract
This project aimed to explore the influence of the interaction between ovotransferrin fibrils (OTF) and gum arabic (GA) on the formation mechanism, physicochemical properties, and curcumin delivery of the oleogel-in-water Pickering emulsion. Cryo-scanning electron microscopy results showed that OTF—GA complexes effectively adsorbed on the oil–water interface, generating spatial hindrance to inhibit droplet coalescence. The texture analysis also proved that OTF—GA complexes endowed oleogel-in-water Pickering emulsion with preferable springiness (0.49 ± 0.03 mm), chewiness (0.43 ± 0.07 mJ), and adhesion (0.31 ± 0.01 mJ). By exploring the coalescence stability, droplet size, and rheological properties of OTF—GA complexes–stabilized oleogel-in-water Pickering emulsion (OGPE), the higher coagulation stability, larger average droplet size (46.22 ± 0.08 μm), and stronger gel strength were observed. The microrheological results also exhibited stronger attraction between the OGPE droplets, a more pronounced solid-like structure, and a slower speed of movement than OTF-stabilized oleogel-in-water Pickering emulsion (OPE). Meanwhile, OGPE significantly enhanced the extent of lipolysis, stability, and bioaccessibility of curcumin, suggesting that it possessed superior performance as a delivery system for bioactive substances. This project provided adequate theoretical references for protein–polysaccharide complexes–stabilized oleogel-in-water Pickering emulsion, and contributed to expanding the application of oleogel-in-water Pickering emulsion in the food industry.
Funder
Natural Science Foundation of Shandong Province
Shandong Provincial Natural Science Fund for Excellent Young Scientists Fund Program
Taishan Scholar Foundation of Shandong Province