Ovotransferrin Fibril—Gum Arabic Complexes as Stabilizers for Oleogel-in-Water Pickering Emulsions: Formation Mechanism, Physicochemical Properties, and Curcumin Delivery

Author:

Wei Zihao1ORCID,Dong Yue1,Si Jingyu1

Affiliation:

1. State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China

Abstract

This project aimed to explore the influence of the interaction between ovotransferrin fibrils (OTF) and gum arabic (GA) on the formation mechanism, physicochemical properties, and curcumin delivery of the oleogel-in-water Pickering emulsion. Cryo-scanning electron microscopy results showed that OTF—GA complexes effectively adsorbed on the oil–water interface, generating spatial hindrance to inhibit droplet coalescence. The texture analysis also proved that OTF—GA complexes endowed oleogel-in-water Pickering emulsion with preferable springiness (0.49 ± 0.03 mm), chewiness (0.43 ± 0.07 mJ), and adhesion (0.31 ± 0.01 mJ). By exploring the coalescence stability, droplet size, and rheological properties of OTF—GA complexes–stabilized oleogel-in-water Pickering emulsion (OGPE), the higher coagulation stability, larger average droplet size (46.22 ± 0.08 μm), and stronger gel strength were observed. The microrheological results also exhibited stronger attraction between the OGPE droplets, a more pronounced solid-like structure, and a slower speed of movement than OTF-stabilized oleogel-in-water Pickering emulsion (OPE). Meanwhile, OGPE significantly enhanced the extent of lipolysis, stability, and bioaccessibility of curcumin, suggesting that it possessed superior performance as a delivery system for bioactive substances. This project provided adequate theoretical references for protein–polysaccharide complexes–stabilized oleogel-in-water Pickering emulsion, and contributed to expanding the application of oleogel-in-water Pickering emulsion in the food industry.

Funder

Natural Science Foundation of Shandong Province

Shandong Provincial Natural Science Fund for Excellent Young Scientists Fund Program

Taishan Scholar Foundation of Shandong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3