Identification of Burkholderia gladioli pv. cocovenenans in Black Fungus and Efficient Recognition of Bongkrekic Acid and Toxoflavin Producing Phenotype by Back Propagation Neural Network

Author:

Niu Chen1ORCID,Song Xiying1,Hao Jin1,Zhao Mincheng2,Yuan Yahong1,Liu Jingyan1,Yue Tianli1

Affiliation:

1. College of Food Science and Technology, Northwest University, Xi’an 710069, China

2. The 20th Research Institute of CETC, Xi’an 710068, China

Abstract

Burkholderia gladioli pv. cocovenenans is a serious safety issue in black fungus due to the deadly toxin, bongkrekic acid. This has triggered the demand for an efficient toxigenic phenotype recognition method. The objective of this study is to develop an efficient method for the recognition of toxin-producing B. gladioli strains. The potential of multilocus sequence typing and a back propagation neural network for the recognition of toxigenic B. cocovenenans was explored for the first time. The virulent strains were isolated from a black fungus cultivation environment in Qinba Mountain area, Shaanxi, China. A comprehensive evaluation of toxigenic capability of 26 isolates were conducted using Ultra Performance Liquid Chromatography for determination of bongkrekic acid and toxoflavin production in different culturing conditions and foods. The isolates produced bongkrekic acid in the range of 0.05–6.24 mg/L in black fungus and a highly toxin-producing strain generated 201.86 mg/L bongkrekic acid and 45.26 mg/L toxoflavin in co-cultivation with Rhizopus oryzae on PDA medium. Multilocus sequence typing phylogeny (MLST) analysis showed that housekeeping gene sequences have a certain relationship with a strain toxigenic phenotype. We developed a well-trained, back-propagation neutral network for prediction of toxigenic phenotype in B. gladioli based on MLST sequences with an accuracy of 100% in the training set and an accuracy of 86.7% in external test set strains. The BP neutral network offers a highly efficient approach to predict toxigenic phenotype of strains and contributes to hazard detection and safety surveillance.

Funder

China National Key R&D Program during the 13th Five-year Plan Period

Natural Science Foundation of Shaanxi Provincial Department of Education

National College Student and Entrepreneurship Training Program

The central government guides local development funds

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3