A Hybrid Forecasting Model for Electricity Demand in Sustainable Power Systems Based on Support Vector Machine

Author:

Li Xuejun1,Jiang Minghua1,Cai Deyu2ORCID,Song Wenqin3,Sun Yalu3

Affiliation:

1. State Grid Gansu Electric Power Co., Ltd., Jinan 730030, China

2. School of Electrical Engineering, Shandong University, Jinan 250061, China

3. State Grid Gansu Electric Power Company Economic and Technological Research Institute Co., Ltd., Jinan 730050, China

Abstract

Renewable energy sources, such as wind and solar power, are increasingly contributing to electricity systems. Participants in the energy market need to understand the future electricity demand in order to plan their purchasing and selling strategies. To forecast the electricity demand, this study proposes a hybrid forecasting model. The method uses Kalman filtering to eliminate noise from the electricity demand series. After decomposing the electricity demand using an empirical model, a support vector machine optimized by a genetic algorithm is employed for prediction. The performance of the proposed forecasting model was evaluated using actual electricity demand data from the Australian energy market. The simulation results indicate that the proposed model has the best forecasting capability, with a mean absolute percentage error of 0.25%. Accuracy improved by 74% compared to the Support Vector Machine (SVM) electricity demand forecasting model, by 73% when compared to the SVM with empirical mode decomposition, and by 51% when compared to the SVM with Kalman filtering for noise reduction. Additionally, compared to existing forecasting methods, this study’s accuracy surpasses LSTM by 63%, Transformer by 47%, and LSTM-Adaboost by 36%. The simulation of and comparison with existing forecasting methods validate the effectiveness of the proposed hybrid forecasting model, demonstrating its superior predictive capabilities.

Funder

State Grid Gansu Electric Power Company Economic and Technical Research Institute 2024 Self-Funded Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3