Analysis of demand, generation, and emission for long-term sustainable power system planning using LEAP: The case of Bangladesh

Author:

Sahabuddin Md.12ORCID,Khan Imran12ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, Jashore University of Science and Technology 1 , Jashore 7408, Bangladesh

2. Energy Research Laboratory, Jashore University of Science and Technology 2 , Jashore 7408, Bangladesh

Abstract

The availability of quality power is a foremost need for a nation's sustainable development. The government of Bangladesh has the vision to be a high-income country by 2041. To meet the power challenges in the near future associated with the vision, there should be a well-planned master plan for the power system. Bangladesh has a power system master plan (PSMP) up to 2041. However, it is unclear whether the PSMP is the most adaptable plan considering different power generation scenarios by considering the demand, generation, and emissions. Hence, the long-range energy alternative planning (LEAP) tool is employed for scenario analyses of Bangladesh's electricity sector from 2022 to 2041. On the demand side, the final electricity demand has been projected as 335.25, 314.76, 376.59, and 398.10 TWh in 2041 for business-as-usual (BAU), low growth (LG), medium growth (MG), and high growth (HG) scenarios, respectively. Considering technical and environmental parameters, eight generation scenarios are also analyzed on the supply side. The analysis projected 58,230 MW capacity for BAU and LG under P1 to P8 generation scenarios and 68,830 MW capacity for MG and HG under Q1–Q8 generation scenarios in 2041. In terms of emission in 2041, 167.4 and 165 MMt CO2 equivalent are found for the P8 scenario in the case of BAU and LG. In Q8, for MG and HG, the emissions are found to be 206.5 and 209.4 MMt CO2 equivalent, respectively. The generation scenarios of P8 for BAU and LG and Q8 for MG and HG are found to be suitable ones with respect to energy reliability and reduced emission. A similar analysis could also be performed to identify suitable power generation plans for other developing countries.

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3